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Analytical and numerical study of the near flow
field and shape of the Mach stem in steady flows
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The flow fields behind the Mach stem in steady-state Mach reflections are analysed
theoretically and numerically. When the angle between the slipline and the reflecting
plane is sufficiently small, the subsonic flow just behind the Mach stem can be des-
cribed by the isentropic small-disturbance equation. Using this analytical model, a very
simple algebraic expression for the shape of the Mach stem is obtained. It is found
that the Mach stem is well-approximated by a circular arc with very small curva-
ture. The prediction by the model agrees very well with numerical computations.

1. Introduction
It is well-known that the reflection of oblique shock waves in steady flows results

in two types of wave configurations: regular reflection (RR) and Mach reflection
(MR) (see figure 1). In RR, the incident shock wave (i) and the reflected shock wave
(r) meet at the reflecting surface to form a two-shock configuration at the reflection
point. In MR, an additional shock wave, known as the Mach stem (M), connects the
incident shock wave and reflected shock wave to form a triple-shock configuration.

Since Mach (1878) observed Mach reflection, a variety of problems have been
addressed. Von Neumann (1945) developed the three-shock theory for MR. The search
for the transition criterion from RR to MR or vice versa has been an objective of
numerous studies. Von Neumann (1943) proposed two criteria for the transition from
RR to MR: the detachment criterion and the mechanical equilibrium criterion. The
latter was reinitiated by Henderson & Lozzi (1975) and was called the von Neumann
criterion. In the (M∞, θw)-plane (figure 2), where M∞ is the free-stream Mach number
and θw is the wedge angle, the detachment criterion and the von Neumann criterion
are represented by two distinct curves: the von Neumann criterion is represented by
the lower curve (θw = θN

w (M∞)), below which only RR is possible, and the detachment
criterion is represented by the upper curve (θw = θD

w (M∞)), above which only MR is
possible. The domain between these two curves is called the dual solution domain.
In recent years, experimental and theoretical studies (Henderson & Lozzi 1979;
Hornung & Robinson 1982; Teshukov 1989; Li & Ben-Dor 1996; Chpoun et al.
1994, 1995; Vuillon, Zeitoun & Ben-Dor 1995) have shown that both RR and MR
are possible in the dual solution domain. The existence of a dual solution domain
led Hornung, Oertel & Sandeman (1979) to hypothesize that a hysteresis could exist
in the RR←→MR transition process. Chpoun et al. (1995) were the first to record
hysteresis in the RR←→MR transition experimentally. Chpoun et al. (1994) and
Ivanov, Gimelshein & Beylich (1995) confirmed the existence of this hysteresis through
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Figure 1. Shock wave reflections. (a) Regular reflection, (b) Mach reflection.
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Figure 2. Domains of different types of reflection.

numerical experiments. Both wedge-angle-variation-induced hysteresis and Mach-
number-variation-induced hysteresis are possible. Fomin et al. (1996) and Skews (1997,
2000) showed that the hysteresis details were contaminated by three-dimensional effect
and therefore could not be considered as purely two-dimensional. Ben-dor, Elperin &
Vasiliev (2003) studied flow Mach-number-variation-induced hysteresis for conical
shock waves. More details of shock wave reflections can be found in Ben-Dor (1991),
Ben-Dor, Igra & Elperin (2001), and Ben-Dor et al. (2002).

Understanding the characteristics of the Mach stem is important in the design of
supersonic vehicles. Li & Ben-Dor (1997) used several examples to show the great
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influence of the Mach stem geometry on the operating conditions of the inlet/
combustor of a hypersonic craft, on the heating loads of a blunt body, and on the
initiation of the detonation in a ram accelerator. However, after Courant & Friedrichs
(1948) raised the question of how to determine the size of the Mach reflection, further
analytical studies were not conducted until the 1990s. Azevedo & Liu (1993) proposed
an engineering approach to estimate the height and location of the Mach stem. Li &
Ben-Dor (1997) performed a more elaborated study for the flow fields associated with
Mach reflection. Their analytical model is used to identify the dominant factors that
affect the size and location of Mach reflections in certain steady flow situations. They
noted that the centred expansion fan that originated at the trailing edge of the wedge
interacted with the slipline to create the sonic throat and hence determined the Mach
stem height and location.

In this paper, we will perform a detailed analysis of the subsonic flow pocket just
behind the Mach stem by assuming the angle between the slipline and the reflecting
plane to be sufficiently small. Specifically, we will study the shape of the Mach stem.
It is interesting to note that there have been some experimental studies concerning the
shape of the Mach stem for pseudo-steady reflections. Dewey & McMillin (1985a, b)
made a detailed study of the shapes of the incident, reflected and Mach stem shocks.
They showed that the Mach stem was described well by a circular arc, although the
centre of the Mach stem was slightly below the reflecting surface. Their experimental
results were confirmed by Olim & Dewey (1992) and Dewey & Barss (1996). The
shape of the Mach stem has also been studied analytically by Li, Ben-Dor & Han
(1994) for pseudo-steady reflections, and by Li & Ben-Dor (1997) for steady flows
from a geometrical point of view.

The analytical model suitable for describing the steady subsonic flow just behind
the Mach stem will be presented in § 2. The orders of some disturbance flow variables
in this subsonic flow pocket will be first analysed in detail to obtain the correct flow
model. Based on this analysis, the small-disturbance flow model valid in this region
will be derived. In § 3, the governing equation for the flow model § 2 will be solved
and an analytical expression for the shape of the Mach stem will be obtained. In § 4,
numerical case studies will be performed to verify the analytical results. The essential
points of this paper will be summarized in § 5.

2. Analysis of the flow field and the flow model for the subsonic flow pocket
just behind the Mach stem

2.1. Basic assumptions

Figure 3 shows an example of Mach reflection. For the chosen coordinate system,
x lies along the reflecting surface and y is perpendicular to this surface. The triple
point is on the y-axis. The height of the Mach stem Hm is assumed to be known,
either experimentally, numerically, or analytically using the model developed by Li &
Ben-Dor (1997).

The basic assumption adopted in the analysis is that θ3, the angle between the
slipline s and the horizontal surface measured in radians, is small, namely θ3∼ ε,
where ε is a small quantity. Using the three-shock theory, we can calculate the
value of θ3 for a wide range of incoming flow-Mach number M∞ and wedge angle θw .
Figure 4 displays the result for the parameter range M∞=3.0∼ 5.0 and θw = 21◦ ∼ 28◦.
It is clear that θ3 < 12◦ (0.209 rad) over the specified range of M∞ except near the
upper left corner. Thus, the small angle assumption is not as restrictive as it appears.
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Figure 3. Mach reflection.
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Figure 4. Diagram of θ3 = θ3(M∞, θw).

2.2. Features of flows in the subsonic pocket just behind the Mach stem

We use subscript ∞ to denote the flow condition before the Mach stem, and 0 to
denote the flow condition downstream of the lowest point of the Mach stem. Then
we can express the velocity components Vx , Vy , the pressure P , the temperature T

and the entropy S in the subsonic pocket as the sum of a constant-state solution and
a small perturbation:

Vx = V0 + vx,

Vy = vy,

P = P0 + p,

T = T0 + t,

S = S0 + s.
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We first assume the flow to be rotational and express the perturbation of the velocity
as the sum of a potential part and a rotational part:

vx =
∂φ

∂x
+ mx, vy =

∂φ

∂y
, (1)

where mx represents the contribution from the rotational part. It can be shown that
adding a similar term, say my , in the expression for vy does not affect the results,
since we can make a transformation to eliminate this term.

We only consider the flow in the subsonic pocket sufficiently close to Mach stem.
The analytical results obtained in the following paragraphs are strictly valid only in a
very narrow band behind the Mach stem. However, this is enough for us to determine
the shape of Mach stem.

The orders of the perturbation variables will be related to the small quantity θ3∼ ε

or θ . It is obvious that θ � O(ε). To avoid cumbersome notation, we simply write

θ ∼ O(ε). (2)

2.2.1. The entropy field

The difference between the entropy after and before the Mach stem can be found
from any classical textbooks on gas dynamics:

S − S∞ = Rf (β),

where

f (β) = ln

{[
1 +

2γ

γ + 1

(
M2
∞ sin2 β − 1

)]1/(γ−1) [
(γ + 1) M2

∞ sin2 β

(γ − 1) M2
∞ sin2 β + 2

]−γ /(γ−1)
}

,

and β is the local shock angle, i.e. the angle between the tangent of the (local) shock
front of the Mach stem and the x-axis. At the lowest point of the Mach stem, we
have β = π/2 and S = S0.

From the theory of oblique shock waves, we have

tan θ = 2
cos β

sin β

M2
∞ sin2 β − 1

M2
∞ (γ + cos 2β) + 2

, (3)

which along with (2) leads to

β − π/2 ∼ θ ∼ O(ε). (4)

Expanding f (β) about π/2, we obtain

f (β) = f

(
π

2

)
+ f ′

(
π

2

)(
β − π

2

)
+

1

2
f ′′

(
π

2

)(
β − π

2

)2

+ · · · .

It is easy to show that f ′(π/2) = 0. Hence the entropy perturbation defined by
s = S− S0 is given by

s = R

[
f

(
β

)
− f

(
π

2

)]
= R

[
1

2
f ′′

(
π

2

)(
β − π

2

)2

+ · · ·
]
. (5)

Inserting (4) into the above expression yields

s ∼ O(ε2). (6)

Hence, the entropy perturbation is of second order.
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Using (5), we obtain

∂s

∂β
= Rf ′′

(
π

2

)(
β − π

2

)
+ · · · = O(ε)

so that the following expression holds:

∂s

∂y
=

∂s

∂β

∂β

∂y
∼ ∂β

∂y
O(ε). (7)

There is no need to know the exact order of ∂β/∂y in the subsequent analysis. We
simply write

∂β

∂y
∼ O(εk), (8)

with k � 0. Therefore, we have from (7)

∂s

∂y
∼ O(ε1+k). (9)

Using the well-known Crocco’s theorem V ×Ω =−T ∇S, we can write

VxΩz = T
∂S

∂y
, VyΩz = −T

∂S

∂x
,

where Ω denotes the vorticity. Neglecting the smaller terms, we have

Ωz =
T0

V0

∂s

∂y
= −T0

vy

∂s

∂x
. (10)

In § 2.2.2, we will show that vy ∼ O(ε); therefore, we have

∂s

∂x
=

vy

V0

∂s

∂y
∼ O(ε2+k). (11)

In summary, the entropy perturbation in the subsonic flow region just behind the
Mach stem satisfies the following order of magnitude estimations:

s ∼ O(ε2),
∂s

∂x
∼ O(ε2+k),

∂s

∂y
∼ O(ε1+k). (12)

2.2.2. The velocity perturbation

The flow angle θ is related to the velocity by the expression tan θ = −vy/(V0 + vx),
which can be approximated by

θ ∼= −
vy

V0

. (13)

This means that

vy ∼ O(ε),

since θ ∼ O(ε).
For small θ , (3) gives

θ = α cos β, α =
2
(
M2
∞ − 1

)
2 + (γ − 1)M2

∞
. (14)

The pressure across the Mach stem satisfies

P

P∞
= 1 +

2γ

γ + 1

(
M2
∞ sin2 β − 1

)
. (15)
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At the lowest point of the Mach stem, we have β = π/2 and P |y=0 = P0 so that

P0

P∞
= 1 +

2γ

γ + 1

(
M2
∞ − 1

)
. (16)

Using (14) to (16), the pressure perturbation behind the Mach stem is calculated to
be

p

P∞
= − 2γ

γ + 1
M2
∞ cos2 β = − 2γ

γ + 1
M2
∞

θ2

α2
. (17)

Since α∼O(1), for sufficiently large M2
∞ − 1, we have

p

P∞
∼ O(ε2).

Using the following well-known expression for the linearized pressure coefficient:

p
1
2
ρ0V

2
0

= −2
vx

V0

,

we obtain from (17) the following expressions for vx:

vx =
K

a∞
θ2, K =

γ + 1

2
(
M2
∞ − 1

)2
.

For large values of M2
∞ − 1, we have K ∼O(1). Therefore

vx ∼ O(ε2). (18)

From (18) it is clear that ∂vx/∂x is at most of O(ε). Using a quasi-one-dimensional
analysis, we can show that ∂vx/∂x is just of O(ε). The averaged x-component velocity
perturbation is denoted by ū (averaged along the height of the slipline). We thus have
∂vx/∂x∼ ∂ū/∂x and

dū

V0

= − 1

1−M2
0

dH

H
,

where H is the height of the slipline. Using this relation, it is easy to show that

dū

dx
= − V0(

1−M2
0

)
H

dH

dx
≈ V0(

1−M2
0

)
H

θ3 ∼ O(ε),

and thus,

∂vx

∂x
∼ O(ε). (19)

For the rotational part of the velocity disturbance mx , we substitute (2) into (10)
to obtain

−∂mx

∂y
=

T0

V0

∂s

∂y
.

Integrating this equation, we have

mx = −T0

V0

s + η(x). (20)

Since the reflecting surface is a streamline, we necessarily have ∂s/∂x|y=0 = 0. Since
the reflecting surface is also a symmetry line, we have ∂s/∂y|y=0 = 0. This means that
∇s|y=0 = 0, i.e. the flow is irrotational on the reflecting plane behind the Mach stem
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and the following expression holds:

mx |y=0 = 0.

Using this relation and s|y=0 = 0 in (20), we obtain η(x) = 0 so that (20) reduces to

mx = −T0

V0

s ∼ O(ε2). (21)

2.3. The flow model in the subsonic pocket just behind the Mach stem

Shapiro (1953, p. 266) noted that, when shocks appear in an initially irrotational flow,
the flow downstream of the shock is in general rotational. However, the amount of
rotation introduced by a curved shock is often so small that there is little error in
treating the downstream flow as irrotational. Here we prove that the flow just behind
the Mach stem can indeed be described by the potential flow equation. Inserting (2)
into the small-perturbation equation(

1−M2
0

)∂vx

∂x
+

∂vy

∂y
= 0,

and using (21) to eliminate mx , we obtain

(
1−M2

0

)(∂2φ

∂x2
− T0

V0

∂s

∂x

)
+

∂2φ

∂y2
= 0. (22)

From (19), we have

∂vx

∂x
=

∂2φ

∂x2
− T0

V0

∂s

∂x
∼ O(ε).

This means that ∂s/∂x, which is of O(ε2+k) (k � 0) according to (12), can be ignored.
Hence the flow in the subsonic pocket just behind the Mach stem can be described
by the potential flow equation

(
1−M2

0

)∂2φ

∂x2
+

∂2φ

∂y2
= 0. (23)

The normal velocity vanishes on the reflecting surface, implying

∂φ

∂y

∣∣∣∣
y=0

= 0. (24)

At the triple point, the velocity to the right of the Mach stem is in the same direction
as the slipline

∂φ

∂y

∣∣∣∣
y=Hm

= −V0θ3. (25)

Neglecting the O(ε2) term in (18), we obtain another condition

∂φ

∂x

∣∣∣∣
x=0

= 0. (26)

It should be noted that the flow behind the Mach stem is subsonic, and hence the
downstream influence can theoretically reach the Mach stem. In order to obtain
the complete solution in the subsonic pocket, we need a fourth boundary condition
downstream of the subsonic region. However, in the present paper, we are interested
in the shape of the Mach stem, which is related only to the asymptotic behaviour
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of the solution just behind the Mach stem. For this purpose, the governing equa-
tion (23) and boundary conditions (24), (25), and (26) form a closed set.

3. Analytical expression for the shape of the Mach stem
3.1. The solution of the small-disturbance equation

We non-dimensionalize (23) according to

φ =
φ

a0H∞
, x =

x

H∞
, y =

y

H∞
, Hm =

Hm

H∞
,

where H∞ is the distance between the leading edge of the wedge and the x-axis, and
a0 is the speed of sound downstream of the lowest point of the Mach stem. The
non-dimensional isentropic small-disturbance equation can be written as

κ2 ∂2φ

∂x2
+

∂2φ

∂y2
= 0, (27)

where κ2 = 1−M2
0 . The non-dimensional boundary conditions (24), (25) and (26) are

y = 0,
∂φ

∂y
= 0; (28)

y = Hm,
∂φ

∂y
= −V0θ3

a0

; (29)

x = 0,
∂φ

∂x
= 0. (30)

For x̄	 1, we can expand φ in terms of x̄ as follows:

φ = f0 (y) + f1 (y) x + f2 (y) x2 + · · · . (31)

Neglecting the terms of order higher than O(x2) in (31) and substituting the resulting
expression into (27), we obtain

[2κ2f2(y) + f ′′0 (y)] + f ′′1 (y)x + f ′′2 (y)x2 = 0. (32)

Because (32) holds for all x, we must have

2κ2f2(y) + f ′′0 (y) = 0, (33)

f ′′1 (y) = 0, (34)

f ′′2 (y) = 0. (35)

Inserting (31) in (28) to (30), we obtain the following expressions:

f ′0(0) = 0, f ′0(Hm) = −V0θ3

a0

, (36)

f ′2(0) = 0, f ′2(Hm) = 0, (37)

f1(y) = 0. (38)

The solutions of (33) and (35), subjected to the boundary conditions (36) and (37), are

f2(y) = C1, (39)

f0(y) = −C1κ
2y2 + C2, (40)
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with

C1 =
V0θ3

2κ2a0Hm

.

Substituting (38) to (40) into (31), we obtain the potential of the velocity perturbation

φ = C2 +
V0θ3

2a0Hmκ2
x2 − V0θ3

2a0Hm

y2 + · · · , (41)

which results in

vx =
V0θ3

a0Hmκ2
x, vy = − V0θ3

a0Hm

y.

In dimensional form, the expressions for the velocity are given by

vx =
V0θ3

Hm

(
1−M2

0

)x =

[
(γ − 1)M2

∞ + 2
][

2γM2
∞ − (γ − 1)

]
Hm(γ + 1)2

(
M2
∞ − 1

) a∞θ3x, (42)

vy =
V0θ3

Hm

y = − (γ − 1)M2
∞ + 2

γ + 1

θ3

Hm

a∞y, (43)

where we have used the following expressions (from the normal shock wave theory):

V0 = a∞
(γ − 1)M2

∞ + 2

γ + 1
, M2

0 =
1 + 1

2
(γ − 1)M2

∞

γM2
∞ − 1

2
(γ − 1)

.

3.2. The shape of the Mach stem

Denoting the profile of the Mach stem as f (x, y) = 0, we have

dy

dx
= − tan β = −

√
1− cos2 β

cos β
. (44)

which, along with (14), yields the following equation:

dy

dx
= −

√
1− (θ/α)2

θ/α
. (45)

Since θ =(θ3/Hm)y according to (43) and (13), (45) can be rewritten as

dy

dx
= −

√
1− (θ3/(αHm))2y2

y(θ3/(αHm))
.

Integration of the above equation yields

(x + C)2 + y2 =

(
αHm

θ3

)2

.

With y|x=0 = Hm, the constant C is determined to be C =
√

(αHm/θ3)2 −H 2
m.

Therefore, the shape of the Mach stem is described by the curve(
x +

√(
αHm

θ3

)2

−H 2
m

)2

+ y2 =

(
αHm

θ3

)2

, (46)

with

α =
2
(
M2
∞ − 1

)
2 + (γ − 1)M2

∞
.
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Figure 5. The computational domain and the boundary conditions.

It is clear that the shape of the Mach stem based on the present analysis is a circular
arc centred at (

−

√(
αHm

θ3

)2

−H 2
m, 0

)
,

and the two end points are (0, Hm) and (αHm/θ3−
√

(αHm/θ3)2 −H 2
m, 0). It should be

noted that the centre of the circular arc is just on the reflecting plane.

4. Numerical validations and discussions
In this section, we will not only compare the numerical shape of the Mach stem with

the analytical one, but also check some important order of magnitude estimations
derived in § 2.

In the numerical simulation, we solve the full set of nonlinear Euler equations
in gas dynamics using a Godunov-type flux-difference splitting method. In order to
numerically capture the shape of the Mach stem, we will have to use a very fine grid.
However, when the free-stream Mach number is large and/or the grid is fine enough,
the ‘carbuncle’ or the ‘odd-even decoupling’ phenomena might occur (Quirk 1994)
when a Godunov-type scheme is used. To avoid this difficulty, we use the rotated
Riemann solver proposed by Ren (2003) which is free from the ‘carbuncle’ phenomena
while capturing the slipline at high resolution.

We will choose a number of combinations of incoming-flow Mach number M∞ and
wedge angle θw to produce Mach reflection configurations with different θ3 according
to the three-shock theory. In figure 5, we display a typical computational domain
and the types of boundary conditions used in the simulation. It should be noted
that the configuration of the Mach reflection may be affected by the downstream
boundary conditions under some circumstance, as being indicated by Henderson &
Lozzi (1979), Hornung & Robinson (1982), and Li & Ben-Dor (1997). To isolate the
Mach reflection from downstream influences in the numerical simulation, the flow
conditions are chosen so that the flow field above slipline is supersonic everywhere.
Furthermore, the outlet boundary is placed downstream of the sonic throat formed
by the interaction between the expansion fan and the slipline. As a result, the flow
is supersonic at the outlet (right) boundary and free of the far-field downstream
influences.

There is no standard way to extract the shape of the Mach stem from numerical
results. Due to the numerical viscosity, the computed discontinuities will spread over
several (1∼ 3) grid points. To overcome this difficulty, we extract the lines on which
|∇ρ|L = 0.8|∇ρ|max, where |∇ρ|max is the maximum magnitude of the density gradient
in the entire region covering the Mach stem. There are two contour lines on which



352 L.-H. Tan, Y.-X. Ren and Z.-N. Wu

A numerically
    simulated
 discontinuity

Extracted shape of
 the discontinuity
    (in x-y plane)

ρ

ρ| |

ρ| |L

ρ| |L

ρ| |max

x

x

y

y

Two contour lines corresponding to

∆

∆

∆

∆
Figure 6. The procedure to determine the shape of a discontinuity from the

numerical results.

|∇ρ|= |∇ρ|L. The discontinuity is determined numerically by assuming it to be at the
centre of these two lines. This procedure is illustrated in figure 6.

4.1. The perturbation quantities in the subsonic pocket behind the Mach stem

Recall that the flow model used in the derivation of the analytical shape of the Mach
stem has been based on order of magnitude estimations like

s ∼ O(ε2), vx ∼ O(ε2), vy ∼ O(ε), (47)

∂s

∂x
	 ∂s

∂y
, (48)

which are obtained in § 2. Here we will validate these estimations numerically.
Consider the flow conditions M∞=3.0, θw = 21.846◦ and w/H∞= 1.4, where w is

the diagonal length of the wedge. We use a 300× 200 grid for numerical computation.
The angle of the slip line is θ3 = 4.20◦ in this test case. We plot in figure 7 the distribu-
tion of normalized perturbation variables, denoted by ŝ, v̂x , and v̂y , along the vertical
grid line that is nearest to the Mach stem in the subsonic pocket. The ŝ, v̂x , and v̂y
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Figure 7. The distributions of ŝ, v̂x , and v̂y along the vertical grid line that is nearest to the
Mach stem in the subsonic pocket. M∞= 3.0, θw =21.846◦, θ3 = 4.20◦.
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Figure 8. Contours of the entropy perturbation. M∞= 3.0, θw = 21.846◦.

are given by

ŝ =
S − S0

V 2
0 /T0

=
P0

(γ − 1)ρ0V
2
0

ln

[(
P

P0

)(
ρ0

ρ

)γ ]
,

v̂x =
Vx − V0

V0

,

v̂y =
Vy

V0

,

where the expressions on the right-hand side of these equations are all obtained
through numerical simulation, and the subscript 0 denotes variables on the reflecting
surface. With the vertical axis in logarithmic scale, figure 7 clearly shows that ŝ and
v̂x are approximately of the same order and are all about one order smaller than the
quantity v̂y for values of y � 0.15. This complies with the estimation of (47).

The contours of the entropy perturbation are illustrated in figure 8, which shows
∂s/∂x	 ∂s/∂y. It is apparent that the contour lines of s are almost horizontal,
validating the results of (48).

In deriving the irrotational equation in § 2.3, we have ignored (T0/V0)∂s/∂x since
we have shown that it is much smaller than ∂vx/∂x. To verify this, the computed
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Figure 9. The comparison of the simulated ∂vx/∂x and (T0/V0)∂s/∂x along the vertical
grid line that is nearest to the Mach stem in the subsonic pocket. M∞= 3.0, θw = 21.846◦,
θ3 = 4.20◦.

values for ∂vx/∂x and (T0/V0)∂s/∂x along the vertical grid line that is nearest to the
Mach stem in the subsonic pocket are shown in figure 9, which clearly indicates that
(T0/V0)∂s/∂x is considerably smaller than ∂vx/∂x.

4.2. The shape of the Mach stem

Now we compare the numerical computation with the analytical expression (46)
for the shape of the Mach stem. A grid refinement study is first performed. The
flow conditions used for this study are M∞=4.96, θw = 28◦ and w/H∞=1.1. These
conditions are taken from Shirozu & Nishida (1995) and are also used in Li & Ben-
Dor (1997). Initially, an almost uniform 300× 200 grid is used in the computation,
and near the Mach stem the grid density in the x-direction is 
x/L = 0.01, where L

is the horizontal length of the wedge. Different grid refinements are considered in a
narrow strip containing the Mach stem by using 
x/L = 0.005, 
x/L = 0.0025 and

x/L = 0.00125.

In figure 10, we display the shapes of simulated Mach stems in terms of the Mach
number contours using different grid density as mentioned above. In figure 11, we
show the Mach number contours using the grid with 
x/L = 0.0025. Figure 12 depicts
the shapes of the Mach stem extracted from the numerical simulation. In figure 12,
a clear trend of convergence in the shapes of the Mach stem can be seen. When the
grid densities are 
x/L = 0.0025 and 
x/L = 0.00125, the shapes of the Mach stem
are quite similar. However, for the 
x/L = 0.00125 grid, there are some ‘wiggles’ in
its shape. These wiggles are due to the grid effect since the refinement is made only
in the x-direction and the grid aspect ratio becomes very large in this case. In this
sense, the grid with 
x/L = 0.0025 is more suitable for obtaining the simulated Mach
stem shape. During the grid refinement, the predicted heights of the Mach stem are
almost unchanged, with a value of approximately Hm/H∞= 0.282. This is close to the
numerical simulation of Shirozu & Nishida (1995) and the analytical result of Li &
Ben-Dor (1997), which are both Hm/H∞ = 0.27 in this test case. A comparison of
the shapes of the Mach stem obtained from the present numerical simulation (with

x/L = 0.0025) and predicted by the analytical formulation (46) using the heights
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Figure 10. Mach number contours showing the shapes of Mach stem in the grid refinement
study. M∞= 4.96, θw = 28.0◦, w/H∞=1.1.

of the Mach stem determined by the present simulation and the analytical result of
Li & Ben-Dor (1997) is shown in figure 13. The agreement is very good except at the
upper end points of the Mach stem, where the computed Mach stem merges with
the slipline. The discrepancy reflects the influence of the slipline due to the present
Mach stem shape acquisition algorithm. Because of this close agreement, we believe
that a grid of 
x/L = 0.0025 is sufficient for a quantitative comparison between the
numerical and analytical shapes of the Mach stem.

Three additional test cases are presented now. The grid densities near the Mach
stem are all similar to the grid with 
x/L = 0.0025 used in the grid refinement study.
The flow conditions corresponding to these test cases are summarized in table 1.
The average errors between the numerical and analytical Mach stems are shown in
table 2. These errors are measured in terms of the difference between the analytical
and computed horizontal locations of the shock wave, and are normalized by the

horizontal shift of the Mach stem D = Hm(α/θ3−
√

(α/θ3)2 − 1). The comparison
between the numerical results and the analytical shapes is displayed in figure 14 to
figure 16 for the test cases presented in table 1. It is seen that the agreement between
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Figure 11. Mach number contours corresponding to the finest grid in the grid refinement
study. M∞= 4.96, θw = 28.0◦, w/H∞= 1.1, 
x/L = 0.0025.
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Figure 12. Shapes of the Mach stem in the grid refinement study. M∞= 4.96, θw = 28◦,
θ3 = 12.03◦.
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Figure 13. Comparision of the shapes of the Mach stem obtained from the present numerical
simulation and predicted by the analytical formulation (46) using the heights of the Mach
stem determined by the present simulation and the analytical result of Li & Ben-Dor (1997).
M∞=4.96, θw = 28◦, θ3 = 11.03◦, 
x/L = 0.0025.
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Case I (figure 14) Case II (figure 15) Case III (figure 16)

θw 21.846◦ 24◦ 26◦

M∞ 3.0 3.0 3.0
w/Hm 1.4 1.0 0.7
θ3 4.20◦ 8.43◦ 12.48◦

Table 1. The flow conditions for the three additional test cases.

Case I Case II Case III
|xanalytical − xnumerical|average

D
5.5 % 3.1 % 3.0 %

Table 2. Errors between the theory and the numerical results for the three
additional test cases.
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Figure 14. The analytical and the computed shapes of the Mach stem when θw = 21.846◦,
M∞= 3.0, θ3 = 4.20◦ and w/H∞= 1.4. The solid line is the analytical result, and the dashed
line is the numerical result.

the simulated and analytical shapes of the Mach stem is very good. The largest error
among these test cases is 5.5 %.

4.3. Discussion

Because of the close agreement between the analytical and simulated shapes of the
Mach stem, (46) can be used to quantitatively describe the shapes of the Mach stem.
Below are some further remarks.

(i) Equation (46) can be normalized to obtain(
x̂ +

√(
α

θ3

)2

− 1

)2

+ ŷ2 =

(
α

θ3

)2

, (49)

where x̂ = x/Hm and ŷ = y/Hm. Solving for x̂ using (49) yields

x̂ =
α

θ3

(√
1−

(
θ3ŷ

α

)2

−

√
1−

(
θ3

α

)2)
.
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Figure 15. As figure 14 but for θw =24◦, M∞= 3.0, θ3 = 8.43◦ and w/H∞= 1.0.
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Figure 16. As figure 14 but for θw = 26◦, M∞ = 3.0, θ3 = 12.48◦ and w/H∞ = 0.7.

Since both θ3ŷ/α and θ3/α are small quantities, the use of Taylor’s expansion leads
to

x̂ =
θ3

2α
(1− ŷ2). (50)

Now we compare this expression with the one given by Li & Ben-Dor (1997). Using
the coordinate system and notation of the present paper, the formulation of Li &
Ben-Dor (1997) can be expressed as

x̂ =
cot(β3)

2
(1− ŷ2), (51)

where β3 is the shock angle β at the triple point satisfying

tan θ3 = 2 cotβ3

M2
∞ sin2 β3 − 1

M2
∞(γ + cos 2β3) + 2
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Figure 17. The contour lines of D/Hm showing the dependence of D/Hm on M∞ and θw .

(see (3)). For small θ3 and β − π/2, we have

cot β3 ≈
θ3

2
(
M2
∞ − 1

)
M2
∞(γ − 1) + 2

=
θ3

α
.

Therefore, (50) and (51) are in fact identical for small values of θ3 and β − π/2.

(ii) The normalized horizontal shift of the Mach stem is D/Hm = α/θ3−
√

(α/θ3)2 − 1
according to (46). Since θ3/α is a function of M∞ and θw , the normalized horizontal
shift of the Mach stem is also related to M∞ and θw . Using the three-shock theory,
the relation between D/Hm and M∞ and θw is illustrated in figure 17. It is clear that
D/Hm is an increasing function of θw for the same value of M∞. The dependence of
D/Hm on the incoming-flow Mach number, M∞, is not monotonic: for a fixed θw ,
D/Hm at first increases with M∞; and after a critical value of M∞, decreases with
increasing M∞.

(iii) We now discuss the factors affecting the shape of the Mach stem. We know
that θ3/α is a function of M∞ and θw ,

θ3

α
= g(M∞, θw).

According to (49) or (50), the normalized Mach stem shape can be determined by
M∞ and θw . Hornung & Robinson (1982) have pointed out that

Hm/w = f (γ, M∞, θw, Ht/w),

where Ht is the height of the trailing edge of the wedge. Therefore, the shape of the
Mach stem is determined by the specific heats ratio, the incoming-flow Mach number,
and the geometrical set-up parameterized by w, Ht and θw .

5. Summary
In this paper, a detailed analysis of the subsonic flow pocket just behind the Mach

stem is performed by assuming the angle between the slipline and the reflecting
plane to be small. Under this assumption, the features of flow field in this region are



360 L.-H. Tan, Y.-X. Ren and Z.-N. Wu

analysed and an analytical expression for the shape of the Mach stem is obtained.
The main conclusions of the present paper are summarized below.

(a) For a wide range of flow conditions M∞ and θw , the deviation angle θ3 of the slip-
line is small. For instance, when M∞= 3.0∼ 5.0 and θw = 21◦ ∼ 28◦, θ3 is less than 12◦

(0.209 rad) except at the upper left corner of the (M∞, θw) diagram, see figure 4.
(b) In the subsonic region that just behind the Mach stem, the perturbation flow

field can be characterized by the following estimations of the perturbation variables:

s ∼ O(ε2),
∂s

∂x
	 ∂s

∂y
;

vx ∼ O(ε2), vy ∼ O(ε);

∂vx

∂x
∼ O(ε),

T0

V0

∂s

∂x
	 ∂vx

∂x
.

(c) The order estimations of the perturbation variables mentioned previously imply
that the flow in this region can be described by the isentropic small-disturbance
equation

(
1−M2

0

)∂2φ

∂x2
+

∂2φ

∂y2
= 0,

which leads to an analytical expression for the shape of the Mach stem as follows:

(
x +

√(
αHm

θ3

)2

−H 2
m

)2

+ y2 =

(
αHm

θ3

)2

,

where

α =
2
(
M2
∞ − 1

)
2 + (γ − 1)M2

∞
.

(d) The shape of the Mach stem is a circular arc centred at

(
−

√(
αHm

θ3

)2

−H 2
m, 0

)
,

and the two end points are (0, Hm) and (αHm/θ3−
√

(αHm/θ3)2 −H 2
m, 0). For small

θ3 and β − π/2, this expression is identical to the shape expression obtained by Li &
Ben-Dor (1997) using geometrical considerations.

(e) Numerical simulation using the full set of nonlinear Euler equations validates
the analytical model. The numerical results are in good agreement with the theory in
terms of the orders of the perturbation variables as well as the shapes of the Mach
stems.

(f ) As noted in § 1, Dewey & McMillin (1985a, b) have experimentally observed
the shape of the Mach stem of pseudo-steady reflections and found that the Mach
stem can be described well by a circular arc. Although they dealt with pseudo-steady
reflections, their results nevertheless support the findings of the present paper.
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